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POLE ASSIGNMENT IN VIBRATORY SYSTEMS
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The problem of reassigning some poles of a vibratory system, while keeping the
other poles unchanged, is considered. The problem may be solved uniquely by
single-input state feedback control. A family of solutions to the partial pole
assignment problem may be obtained by applying multi-input control forces. An
algorithm for determining a multi-input control which is small in some sense is
presented. The non-iterative algorithm proposed, de"nes a closed-form solution to
the partial pole assignment problem in its natural second order form, and no "rst
order realization is used. The reduction in the control e!ort achieved by the
proposed method is demonstrated by numerical examples.
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1. INTRODUCTION

The free vibrations of a linear, time-invariant, vibratory system are governed by the
second order system

MzK#Cz5 #Kz"0, (1)

where M, C, K3Rn]n are symmetric matrices, M is positive de"nite, C and K are
positive semi-de"nite, z,z(t)3Rn, and dots indicate derivatives with respect to the
time t. Using separation of variables

z(t)"xejt, (2)

where x is a constant vector, leads to the eigenvalue problem

(j2M#jC#K)x"0. (3)

The characteristic polynomial associated with the open-loop system (1) is de"ned
by

P
o
(j)"det(j2M#jC#K). (4)
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Then, clearly P
o
(j) is a polynomial in j of degree 2n. Its 2n roots Mj

i
N2n
i/1

which
satisfy

P
o
(j

i
)"0 (5)

are the poles of the system. Associated with each pole j
i
, i"1, 2,2, 2n, there exists

a mode shape, or eigenvector, x
i
which non-trivially solves

(j2
i
M#j

i
C#K)xi"0. (6)

Let the spectral matrix be

K"diagMj
1
, j

2
,2, j

2n
N, (7)

and the modal matrix

X"[x
1
Dx

2
D2 Dx

2n
]3Rn]n. (8)

Then the response of the system to the initial conditions

z(0)"z
0
, z5 (0)"v

0
(9)

is given by

z (t)"
2n
+
i/1

a
i
x
i
ej

i
t, (10)

where a"(a
1
, a

2
,2, a

2n
)T is the solution of

A
z
0

v
0
B"C

X
XKDa. (11)

It is well known (see e.g. reference [1] that, under the conditions that we have
imposed on the system, Re(j

i
))0 for all i"1, 2,2, 2n. Hence, the response (10) of

equation (1) is bounded for arbitrary initial conditions z
0

and v
0
. The response of

the system to the initial conditions is required in some applications to diminish
rapidly. This objective can be achieved by relocating some poles of the system in the
complex plane. Suppose we wish to alter the location of the poles by applying the
control force bu(t), where b a constant vector, to the system. Then the dynamics of
the controlled system is governed by

MzK#Cz5 #Kz"bu(t). (12)

The locations of the poles will be independent of the time parameter if we choose
state feedback, i.e.

u(t)"fTz5 #gTz, f, g3Rn, (13)

since equation (12) may be written in the form

MzK#C< z5 #K< z"0, (14)

where

C<"C!bfT and K<"K!bgT. (15)
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Separation of variables,

z (t)"yekt, (16)

y a constant vector and k scalar, leads to the closed-loop eigenvalue problem

(k2M#kC<#K< )y"0. (17)

We de"ne the characteristic polynomial of the closed-loop system (17) by

P
c
(k)"det(k2M#kC<#K< ). (18)

Since C< and K< are in general neither symmetric nor positive semi-de"nite, with
poorly chosen f and g, the closed-loop system may be unstable. The closed-loop
eigenvalue problem (17) has 2n eigenvalues k

i
and eigenvectors y

i
. Throughout this

paper, we will assume that the sets Mj
i
N2n
i/1

and Mk
i
N2n
i/1

are closed under
conjugation, although all our results hold without alteration for generally complex
spectral data. The assumption of self-conjugacy ensures a real control function u(t)
which is realizable.

The single-input pole assignment problem can be stated as follows.

Problem 1. Given M, C, K, b and a self-conjugate set Mk
i
N2n
i/1

, ,nd f and g which
assign the poles of equation (14) to the prescribed set Mk

i
N2n
i/1

.

It is well known that if the system (14) is controllable in the sense that the j
i
are

distinct and bTx
i
O0 for i"1, 2,2, 2n, then the single-input pole assignment

problem is solvable, and moreover, the solution is unique. We may thus choose
unique real vectors f and g and assign the poles of equation (14) to an arbitrarily
chosen self-conjugate set Mk

i
N2n
i/1

. The traditional approach to actually determine
the solution is to write the system (12), (13) in its "rst order realization form

d
dt A

z
z5 B"C

0
!M~1K

I
!M~1CDA

z
z5 B#A

0
M~1bB (gT fT)A

z
z5 B (19)

and to apply one of the well-known algorithms, e.g. reference [2], for pole
assignment of a "rst order system.

Although the pole assignment problem by single-input control and its solution
seem satisfactory from a theoretical standpoint, one may still encounter some
di$culties when implementing this methodology in practice. Among other
di$culties we may "nd that the unique solution obtained by the single-input
control is sensitive to perturbations in the system parameters or the applied control
Hence, the poles may be shifted incorrectly due to model uncertainties and
simpli"ed assumptions arising from practical design problems. It may also happen
that the control force u(t) required to relocate the poles is so large that it cannot be
implemented in practice without causing a rapid structural fatigue.

We may overcome the practical di$culties mentioned above by using
multi-input control forces where the closed-loop system (12), (13) is replaced by

MzK#Cz5 #Kz"Bu(t), B3Rn]m, (20)
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with the control vector

u (t)"FTz5 (t)#GTz (t), F, G3Rn]m. (21)

Equations (20) and (21) may thus be written as

MzK#C3 z5 #K3 z"0, (22)

where

C3 "C!BFT, K3 "K!BGT. (23)

The separation of variables (16) now leads to the eigenvalue problem

(k2M#kC3 #K3 )y"0. (24)

with 2n eigenvalues k
i
and their 2n associated eigenvectors y

i
. The multi-input pole

assignment problem is de"ned as follows:

Problem 2. Given M, C, K, B and a self-conjugate set Mk
i
N2n
i/1

, ,nd F and G which
assign the poles of system (20), (21) to the prescribed set Mk

i
N2n
i/1

.

Partitioning

B"[B
1
Db

m
], F"[F

1
Df
m
], G"[G

1
Dg

m
], B

1
, F

1
, G

1
3Rn](m!1)

and denoting

Cx "C!B
1
FT

1
, Kx "K!B

1
GT

1
, ux (t)"gT

m
z5 #f T

m
z, (25)

we may write the multi-input controlled system (20), (21) as a single-input control-
led system

MzK#Cx z5 #Kx z"b
m
ux (t), (26)

with F
1
and G

1
arbitrarily chosen. It may thus be deduced that the multi-input pole

assignment problem has a continuous family of solutions depending on 2n(m!1)
arbitrary parameters (the elements of F

1
and G

1
), provided that certain

controllability requirements are satis"ed.
This arbitrariness in selecting the control has been used by Kautsky et al. [3] to

determine a solution to the pole assignment problem which is in some sense robust
and insensitive to perturbations in the model parameters. This result has been
generalized by Chu and Datta [4] to second order systems as equation (1). The
objective of this paper is to address the problem of reducing the control forces
required to relocate the poles by using multi-input control. In fact, we address the
more general problem of partial pole assignment problem where only 2p)2n poles
of the system are assigned while leaving the other poles unchanged. We develop
algorithms for partial pole assignment using multi-input control. It will be
explained why a signi"cant reduction in the control forces can be achieved and the
results will be demonstrated by simple examples. The analysis is carried out in the
natural second order form of vibrating systems, without using a "rst order
realization that destroys the symmetry and de"niteness of the matrices involved.
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The paper is organized as follows. In section 2 we brie#y summarize the recently
derived solution by Datta et al. [5] to the partial pole assignment problem
by single-input control. We then consider the partial assignment of poles by
multi-input control in Section 3. Two methods are developed, one associated
with a multi-step solution, the other by a single step. Numerical examples
demonstrating signi"cant reductions in the magnitude of the control forces by
using multi-input control are presented in Section 4. Conclusions are "nally drawn
in Section 5.

2. SINGLE-INPUT CONTROL

In order to fully comprehend the underlying idea and mechanism of reducing the
control forces, it is useful to consider "rst the recently developed explicit solution
[5] to the partial pole assignment problem of a second order system using
single-input control.

Let Mj
i
N2p
i/1

, p)n, be a self-conjugate set. Let

K
1
"diagMj

1
, j

2
,2, j

2p
N, X

1
"[x

1
Dx

2
D2x

2p
]. (27)

where j
i

and x
i
, i"1, 2,2, 2p, belong to subset of poles, and the associated

eigenvectors, of the open-loop system (1) respectively. We have given an explicit
solution to the following single-input partial pole assignment problem.

Problem 3. Given M, K, K
1
, X

1
, b and a self-conjugate set Ma

i
N2p
i/1

, ,nd f and g which
assign the poles of system (12), (13) to the set

k
i
"G

a
i
,

j
i
,

i"1, 2,2, 2p,
i"2p#1,2, 2n,

(28)

where j
i
are poles of the open-loop system (1).

The solution to Problem 3 is given by

f"MX
1
K

1
h, g"!KX

1
h, (29)

where h"(h
1
, h

2
,2 , h

2p
)T is de"ned by its components

h
j
"

1
bTx

j

k
j
!j

j
j
j

2p
<
i/1iOj

k
i
!j

i
j
i
!j

j

, j"1, 2,2, 2p. (30)

An important point to observe is that if we relocate the poles to only 1/b, b'1,
of the distance j

j
!a

i
, i"1, 2,2, 2p, then the magnitude of h

j
is reduced by

a factor of b~2p. A reduction in f and g is correspondingly expected via equation
(29). This is one of the mechanisms which we will use to reduce the control force
applied by the multi-input control.
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3. MULTI-INPUT CONTROL

We de"ne the multi-input partial pole assignment problem as follows:

Problem 4. Given M, K, K
1
, X

1
, B and a self-conjugate set Ma

i
N2p
i/1

, ,nd F and
G which assign the poles of system (20), (21) to the set

k
i
"G

a
i
,

j
i
,

i"1, 2,2, 2p,
i"2p#1, 2p#2,2, 2n.

(31)

We present two di!erent solutions to this problem, which we call the multi and
single-step methods. As stated in the introduction, Problem 4 has a continuous
family of solutions. One of our objectives will be, if possible, to select from this
family of solutions, those with a norm which is small in some sense.

3.1. MULTI-STEP SOLUTION

The equations governing the dynamics of the multi-input closed-loop system
(20), (21) may be written equivalently in the form

MzK#Cz5 #Kz"
m
+
i/1

b
i
(fT

i
z5 #gT

i
z), (32)

where b
i
, f

i
and g

i
are the ith columns of B, F and G respectively. We may regard

this equation as m successive assignments of poles by single-input control. For the
sake of de"niteness, consider a segment line J

j
in the complex plane with ends at j

j
and k

j
. Let J

j
be divided into m equal intervals. Let the end of the kth interval

(closer to k
j
) be m

jk
, as shown in Figure 1. Then in the "rst step we may determine

the "rst column of F and G by solving Problem 3 with the substitution b
1
Pb,

f
1
Pf, g

1
Pg and Mm

j1
N2p
j/1

PMk
j
N2p
j/1

. This problem can be solved by equations (29)
Figure 1. Multi-step assignment: ], an open-loop system's pole; #, a closed loop system's pole.
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and (30). In the second stage, once f
1

and g
1

are known, we at least in principle may
determine f

2
and g

2
that assign the eigenvalues Mm

j1
N2p
j/1

of the system

MxK#(C!b
1
fT
1
)x5 #(K!b

1
gT
1
)x"0 (33)

to the set Mm
j2

N2p
j/1

by using a single-input control

MzK#(C!b
1
fT
1
)z5 #(K!b

1
gT
1
)z"b

2
(fT

2
z5 #gT

2
z). (34)

This problem cannot be solved by equations (29) and (30) since C!b
1
fT
1

and
K!b

1
gT
1

are generally non-symmetric matrices. An e!ective method to tackle such
problem will be developed later in this section. Let C

1
"C, K

1
"K and

C
k
"C!

k~1
+
i/1

b
i
f T
i
, K

k
"K!

k~1
+
i/1

b
i
gT
i
, k"2, 3,2, m. (35)

Then continuing in the manner described above, we may determine in the kth
step the control vectors f

k
and g

k
which assign the eigenvalues Mm

j,k~1
N2p
j/1

of

MxK#C
k
x5 #K

k
x"0 (36)

to the set Mm
jk
N2p
j/1

by using the single-input feedback control

MzK#C
k
z5 #K

k
z"b

k
(fT
k
z5 #gT

k
z) (37)

until the complete matrices F and G are determined.
We now develop an algorithm for pole assignment in the kth stage. Note "rst that

the eigenvalue problem associated with equation (37) is

(m2M#m(C
k
!b

k
f T
k
)#(K

k
!b

k
gT
k
) ) y"0. (38)

Theorem 1. For j"1, 2,2, k, k)m, let f
j
and g

j
be chosen, respectively, as

f
j
"MX

1
K

1
h
j
, g

j
"!KX

1
h
j
, (39)

with arbitrary vectors h
j
of appropriate dimension. ¹hen Mj

i
, x

i
N2n
i/2p`1

are eigenpairs
of the closed-loop system (37).

Proof. Let

P
k
"

k
+
i/1

b
i
hT
i
. (40)

Then, using equation (39), we may write equation (38) in the form

(m2M#m (C!P
k
K

1
XT

1
M)#K#P

k
XT

1
K) y"0. (41)

Substituting j
r
Pm, x

r
Py for r'2p we have

(j2
r
M#j

r
(C!P

k
K

1
XT

1
M)#K#P

k
XT

1
K)x

r
"P

k
(!j

r
K

1
XT

1
M#XT

1
K) x

r
"0

(42)



316 Y. M. RAM AND S. ELHAY
by virtue of equation (3) and the "rst orthogonal relation for the symmetric de"nite
quadratic pencil obtained in reference [5] (see equation (20) of that paper). K

It will now be shown how to determine h
k
. We substitute m

jk
Pm and y

j
Py,

j"1, 2,2, 2p, in equation (38):

(m2
jk
M#m

jk
C

k
#K

k
)y

j
"b

k
(m

jk
f T
k
#gT

k
)y

j
. (43)

Note that (m
jk

f T
k
#gT

k
)y

j
is a scalar quantity. Hence, denoting

q
jk
"(m

jk
f T
k
#gT

k
)y

j
, j"1, 2,2, 2p, (44)

equation (43) can be written as

(m2
jk

M#m
jk

C
k
#K

k
)y;

j
"b

k
, j"1, 2,2, 2p, (45)

where y;
j
"q~1

jk
y
j
. Since C

k
and K

k
are explicitly known at the start of the kth step

we may solve equation (45) and evaluate y;
j
. Then using equations (44) and (39) we

have

q
jk
"hT

k
(m

jk
K

1
XT

1
M!XT

1
K)y

j
(46)

or

y; T
j
(m

jk
MX

1
K

1
!KX

1
)h

k
"1, j"1, 2,2, 2p. (47)

De"ne

Y<"[y;
1
Dy;

2
D2 Dy;

2p
] (48)

and

W
k
"diagMm

1k
, m

2k
,2, m

2p,k
N. (49)

Then the 2p linear equations (47) can be written in matrix form as

T
k
h
k
"s, (50)

where

T
k
"Y< T (W

k
MX

1
K

1
!KX

1
) (51)

and

s"(1, 1,2, 1)T3R2p. (52)

Hence h
k
is determined by equation (50) and f

k
and g

k
are determined by equation

(39). We summarize the multi-input partial pole assignment method in the follow-
ing algorithm.

Algorithm 1. Multi-input pole assignment for damped vibrating system.

Input: Three symmetric matrices M, C, K3Rn]n, M positive de"nite; B3Rn]m,
1)m)n; and a self-conjugate set Mk

j
N2p
j/1

, 1)p)n.
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Procedure:
(1) Calculate (or measure by modal test) 2p self-conjugate eigenpairs Mj

i
, x

i
N2p
i/1

of
the open-loop eigenvalue problem (3). De"ne K

1
, X

1
, as in equation (27), and

Mm
j0

N2p
j/1

"Mm
j
N2p
j/1

.
(2) Determine the intermediate poles Mm

jk
N2p
j/1

, to be assigned stepwise at the kth
step, k"1, 2,2, m!1, by dividing the lines connecting j

j
and k

j
to m equal

intervals (as in Figure 1). Set Mm
jm

N2p
j/1

"Mk
j
N2p
j/1

.
(3) Set s"(1, 1,2, 1)T3R2p.
(4) For k"1, 2,2, m

(4.1) For j"1, 2,2, 2p
(4.1.1) Solve the linear system (45) for y;

j
.

(4.2) De"ne Y< and W
k
for the kth step by using equations (48) and (49).

(4.3) Using equation (51) solve equation (50) for h
k
.

(4.5) Evaluate f
k
and g

k
from equation (39).

Output: Two control matrices F"[f
1
, f

2
,2, f

m
] and G"[g

1
, g

2
,2, g

m
]. With

these matrices, the poles of the closed-loop system (20), (21) are the prescribed
values Mk

i
N2p
j/1

and Mj
i
N2n
i/2p`1

. Moreover, let F
k
"[f

1
, f

2
,2, f

k
],

G
k
"[g

1
, g

2
,2, g

k
] and B

k
"[b

1
, b

2
,2, b

k
]; then the poles of

MzK#Cz5 #Kz"B
k
(FT

k
z5 #GT

k
z)

are MMm
jk
N2p
j/1

, Mj
i
N2n
i/2p`1

N for k"1, 2,2, m.

Remark. The output in Algorithm 1 does depend on the order of poles Mj
i
N2n
i/1

and
Mk

i
N2n
i/1

. Since the sets of the poles of the open- and closed-loop systems can be
numbered in any order, we may renumber the poles Mk

i
N2n
i/1

and obtain generally
di!erent control F and G from the algorithm. This provides us with some freedom
in the design of the controller.

3.2. SINGLE-STEP SOLUTION

We now show that the partial pole assignment can be achieved in a single-step
process in which the family of solution is characterized by an arbitrarily chosen
matrix.

Theorem 1 may be recast in the following matrix form.

Theorem 2. ¸et

F"MX
1
K

1
H, G"!KX

1
H, H3R2p]m . (53)

¹hen, for any choice of H, the pairs Mj
i
, x

i
N2n
i/2p`1

are eigenpairs of the closed-loop
system (20), (21).

In order to use Theorem 2 to solve the multi-input partial role assignment
problem, we need to choose H which will move Mj

j
N2p
j/1

of the open-loop system (3)
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to Mk
j
N2p
j/1

in the closed-loop system, if that is possible. If there is such an H, then
there exist an eigenvector matrix Y3Cn]2p,

Y"[y
1
Dy

2
D2 Dy

2p
] (54)

and

D"diagMk
1
, k

2
,2 , k

2p
N, (55)

which are such that

MYD2#(C!BFT )YD#(K!BGT) Y"0. (56)

Substituting for F, G and rearranging, we have

MYD2#CYD#KY"BHT(K
1
XT

1
MYD!XT

1
KY)

"BHTUT (57)

"BVT

with the obvious de"nition of U and

V"UH (58)

is a matrix that will depend on the scaling chosen for the eigenvectors in Y. Let E) be
de"ned by the 2p]m matrix

E<"[eL
ij
]"G

1,
0,

j"i#km, k"0, 1,2,
elsewhere.

(59)

Now, any matrix H which leads to V"E< will su$ce, so one solution can be
obtained as follows.

To begin we construct the matrix Y by solving for each of the eigenvectors
y
i
using the equations

(k2
j
M#k

j
C#K)y

j
"Be;

j
, (60)

where e; T
j

is the jth row of E< . Next, we solve the system UH"E< for H and hence
determine the corresponding F and G. Note that U is invertible whenever the
system is controllable.

For any m]m invertible matrix W we may obtain another solution by replacing
B by BW and F and FW~T throughout.

4. EXAMPLES

To demonstrate the e!ectiveness of methods of the previous sections we give here
the results of some simple comparisons between the control forces that are required
to reassign some poles of a system.
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All calculations were done in IEEE standard double-precision arithmetic
(machine accuracy of about 2]10~16) on the linear algebra package Matlab. All
numbers quoted are correctly rounded to the number of "gures shown.

Example 1. In this examples m"3, p"2 and n varies between 10 and 40. For the
multi-input control B is an n]m identity, i.e.

B"C
I
m
0 D .

In the single-input control each element of b is the sum of the elements in the
corresponding row of B. The other given matrices are M"I, C"0 and

K"C
2 !1

!1 2 !1

!1 2 !1

} } }

!2 2 !1

!1 1
D .

The 2p"4 eigenvalues with smallest absolute values are reassigned to the values
j
2k~1

"!k#J!10k, j
2k
"j1

2k~1
, k"1, 2. For multi-step procedure, this

reassignment is done in m"3 steps of equal length.
The control matrices F and G for the multi- and single-step methods and the

control vectors f and g for the same M, C, K in the single-input control have been
found. The 2-norm of the control vectors and matrices are shown in Table 1. We
can see that, as expected, the task of reassigning four poles of the system while
keeping the other poles unchanged is achieved with a signi"cantly reduced control
e!ort when the multi-input control strategies proposed in the paper are used.

Example 2. In this example we repeat Example 1, but here M, C, and K have
tridiagonal symmetric structure with elements that are uniformly distributed
TABLE 1

Norms of control vectors and matrices for Example 1

Single-input control Multi-input single step Multi-input multi-step

n D f D Dg D DF D DG D DF D DG D

10 96433 279925 5057 70907 20685 20212
20 86137 251060 3978 53262 16652 16575
40 644593 1877483 27010 396778 118597 120908



TABLE 2

Norms of control vectors and matrices for Example 2

Single-input control Multi-input single step Multi-input multi-step

n D f D Dg D DF D DG D DF D DG D

10 3)18]106 2)94]106 1)49]104 1)02]104 4)38]104 4)15]104
20 1)36]107 1)14]107 8)93]104 7)46]104 1)03]106 8)64]105
40 4)54]1015 6)02]1015 6)64]1010 3)43]1010 2)51]1010 3)43]1010
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random numbers in [0, 1]. The results presented in Table 2 for three cases are
typical of those we achieved over a large number of trials and give the #avour of
what one might expect from the methods of the paper, i.e. reduction in the control
e!ort by using the multi-input control.

While the solution via single-input control is unique, the formulation via
multi-input single step expresses a continuous family of possible solutions in terms
of an arbitrary matrix H. A search within the family of solutions gives a design
freedom that may reduce the control e!ort. It is evident from Table 2 that such
a solution may be better in certain situations than that obtained by the multi-input
multi-step solution.

5. CONCLUSIONS

We have suggested in this paper that the multi-input partial pole assignment
problem can be considered as a sequence of pole assignments by single-input
control. The poles are pushed gradually from their initial position to the "nal
destination by the applied control. It is clear from the explicit solution to the
single-input case obtained by Datta et al. [5] that such an approach reduces the
control e!ort signi"cantly. Numerical examples con"rm this observation. The
algorithms presented describe a closed-form, non-iterative, solution to the problem.
The entire analysis is carried out by using the natural set of second order di!eren-
tial equations that governs the motion of vibratory systems, and no "rst order
realization is used.

Investigations of the related problem of assigning both poles and zeros of
a system, and pole assignment for a distributed parameter system can be found in
references [6, 7].
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